【Android】源码分析 - LRUCache缓存实现原理

一、Android中的缓存策略

一般来说,缓存策略主要包含缓存的添加、获取和删除这三类操作。如何添加和获取缓存这个比较好理解,那么为什么还要删除缓存呢?这是因为不管是内存缓存还是硬盘缓存,它们的缓存大小都是有限的。当缓存满了之后,再想其添加缓存,这个时候就需要删除一些旧的缓存并添加新的缓存。

因此LRU(Least Recently Used)缓存算法便应运而生,LRU是近期最少使用的算法,它的核心思想是当缓存满时,会优先淘汰那些近期最少使用的缓存对象,有效的避免了OOM的出现。在Android中采用LRU算法的常用缓存有两种:LruCache和DisLruCache,分别用于实现内存缓存和硬盘缓存,其核心思想都是LRU缓存算法。

其实LRU缓存的实现类似于一个特殊的栈,把访问过的元素放置到栈顶(若栈中存在,则更新至栈顶;若栈中不存在则直接入栈),然后如果栈中元素数量超过限定值,则删除栈底元素(即最近最少使用的元素)。详细算法实现如下图:

  1. 新数据压入到栈顶;
  2. 每当缓存命中(即缓存数据被访问),则将数据移到栈顶;
  3. 当栈满的时候,将栈底的数据丢弃。

举个例子演示一下:

二、LruCache的使用

LruCache是Android 3.1所提供的一个缓存类,所以在Android中可以直接使用LruCache实现内存缓存。而DisLruCache目前在Android 还不是Android SDK的一部分,但Android官方文档推荐使用该算法来实现硬盘缓存。

讲到LruCache不得不提一下LinkedHashMap,因为LruCache中Lru算法的实现就是通过LinkedHashMap来实现的。LinkedHashMap继承于HashMap,它使用了一个双向链表来存储Map中的Entry顺序关系,这种顺序有两种,一种是LRU顺序,一种是插入顺序,这可以由其构造函数public LinkedHashMap(int initialCapacity,float loadFactor, boolean accessOrder)的最后一个参数accessOrder来指定。所以,对于get、put、remove等操作,LinkedHashMap除了要做HashMap做的事情,还做些调整Entry顺序链表的工作。LruCache中将LinkedHashMap的顺序设置为LRU顺序来实现LRU缓存,每次调用get(也就是从内存缓存中取图片),则将该对象移到链表的尾端。调用put插入新的对象也是存储在链表尾端,这样当内存缓存达到设定的最大值时,将链表头部的对象(近期最少用到的)移除。关于LinkedHashMap详解请前往:理解LinkedHashMap

LruCache使用示例

LruCache的使用非常简单,我们就以图片缓存为例:

1
2
3
4
5
6
7
8
int maxMemory = (int) (Runtime.getRuntime().totalMemory()/1024);
int cacheSize = maxMemory/8;
mMemoryCache = new LruCache<String,Bitmap>(cacheSize){
@Override
protected int sizeOf(String key, Bitmap value) {
return value.getRowBytes()*value.getHeight()/1024;
}
};

① 设置LruCache缓存的大小,一般为当前进程可用容量的1/8。
② 重写sizeOf方法,计算出要缓存的每张图片的大小。

注意:缓存的总容量和每个缓存对象的大小所用单位要一致。

LruCache的实现原理

LruCache的核心思想很好理解,就是要维护一个缓存对象列表,其中对象列表的排列方式是按照访问顺序实现的,即一直没访问的对象,将放在队尾,即将被淘汰。而最近访问的对象将放在队头,最后被淘汰。如下图所示:

那么这个队列到底是由谁来维护的,前面已经介绍了是由LinkedHashMap来维护。

而LinkedHashMap是由数组+双向链表的数据结构来实现的。其中双向链表的结构可以实现访问顺序和插入顺序,使得LinkedHashMap中的<key,value>对按照一定顺序排列起来。

通过下面构造函数来指定LinkedHashMap中双向链表的结构是访问顺序还是插入顺序。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
* Constructs a new {@code LinkedHashMap} instance with the specified
* capacity, load factor and a flag specifying the ordering behavior.
*
* @param initialCapacity
* the initial capacity of this hash map.
* @param loadFactor
* the initial load factor.
* @param accessOrder
* {@code true} if the ordering should be done based on the last
* access (from least-recently accessed to most-recently
* accessed), and {@code false} if the ordering should be the
* order in which the entries were inserted.
*/
public LinkedHashMap(
int initialCapacity, float loadFactor, boolean accessOrder) {
super(initialCapacity, loadFactor);
init();
this.accessOrder = accessOrder;
}

其中accessOrder设置为true则为访问顺序,为false,则为插入顺序

以具体例子解释,当设置为true时:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public static final void main(String[] args) {
LinkedHashMap<Integer, Integer> map = new LinkedHashMap<>(0, 0.75f, true);
map.put(0, 0);
map.put(1, 1);
map.put(2, 2);
map.put(3, 3);
map.put(4, 4);
map.put(5, 5);
map.put(6, 6);
map.get(1); //访问1
map.get(2); //访问2

for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
System.out.println(entry.getKey() + ":" + entry.getValue());
}
}

输出结果如下:

0:0
3:3
4:4
5:5
6:6
1:1
2:2

即最近访问的对象会被放到队尾,然后最后输出,那么这就正好满足的LRU缓存算法的思想。可见LruCache巧妙实现,就是利用了LinkedHashMap的这种数据结构。

下面我们在LruCache源码中具体看看,怎么应用LinkedHashMap来实现缓存的添加,获得和删除的。

LruCache源码分析

我们先看看成员变量有哪些:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class LruCache<K, V> {
private final LinkedHashMap<K, V> map;

/** Size of this cache in units. Not necessarily the number of elements. */
private int size; //当前cache的大小
private int maxSize; //cache最大大小

private int putCount; //put的次数
private int createCount; //create的次数
private int evictionCount; //驱逐剔除的次数
private int hitCount; //命中的次数
private int missCount; //未命中次数

//...省略...
}

构造函数如下,可以看到LruCache正是用了LinkedHashMap的accessOrder=true构造参数实现LRU访问顺序:

1
2
3
4
5
6
7
8
public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
//将LinkedHashMap的accessOrder设置为true来实现LRU顺序
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}

put方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public final V put(K key, V value) {
//不可为空,否则抛出异常
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
}

V previous; //旧值
synchronized (this) {
putCount++; //插入次数加1
size += safeSizeOf(key, value); //更新缓存的大小
previous = map.put(key, value);
//如果已有缓存对象,则缓存大小的值需要剔除这个旧的大小
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}

//entryRemoved()是个空方法,可以自行实现
if (previous != null) {
entryRemoved(false, key, previous, value);
}

//调整缓存大小(关键方法)
trimToSize(maxSize);
return previous;
}

可以看到put()方法并没有什么难点,重要的就是在添加过缓存对象后,调用trimToSize()方法,来判断缓存是否已满,如果满了就要删除近期最少使用的算法。

trimToSize方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public void trimToSize(int maxSize) {
while (true) {
K key;
V value;
synchronized (this) {
//如果map为空并且缓存size不等于0或者缓存size小于0,抛出异常
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}

//如果缓存大小size小于最大缓存,或者map为空,则不需要再删除缓存对象,跳出循环
if (size <= maxSize || map.isEmpty()) {
break;
}

//迭代器获取第一个对象,即队头的元素,近期最少访问的元素
Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
key = toEvict.getKey();
value = toEvict.getValue();
//删除该对象,并更新缓存大小
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
}
entryRemoved(true, key, value, null);
}
}

trimToSize()方法不断地删除LinkedHashMap中队头的元素,即近期最少访问的,直到缓存大小小于最大值。

当调用LruCache的get()方法获取集合中的缓存对象时,就代表访问了一次该元素,将会更新队列,保持整个队列是按照访问顺序排序。这个更新过程就是在LinkedHashMap中的get()方法中完成的。

我们先看LruCache的get()方法。

get方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
//LruCache的get()方法
public final V get(K key) {
if (key == null) {
throw new NullPointerException("key == null");
}

V mapValue;
synchronized (this) {
//获取对应的缓存对象
//LinkedHashMap的get()方法会实现将访问的元素更新到队列尾部的功能
mapValue = map.get(key);

//mapValue不为空表示命中,hitCount+1并返回mapValue对象
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++; //未命中
}

/*
* Attempt to create a value. This may take a long time, and the map
* may be different when create() returns. If a conflicting value was
* added to the map while create() was working, we leave that value in
* the map and release the created value.
* 如果未命中,则试图创建一个对象,这里create方法默认返回null,并没有实现创建对象的方法。
* 如果需要事项创建对象的方法可以重写create方法。因为图片缓存时内存缓存没有命中会去
* 文件缓存中去取或者从网络下载,所以并不需要创建,下面的就不用看了。
*/

V createdValue = create(key);
if (createdValue == null) {
return null;
}

//假如创建了新的对象,则继续往下执行
synchronized (this) {
createCount++;
//将createdValue加入到map中,并且将原来键为key的对象保存到mapValue
mapValue = map.put(key, createdValue);

if (mapValue != null) {
// There was a conflict so undo that last put
//如果mapValue不为空,则撤销上一步的put操作。
map.put(key, mapValue);
} else {
//加入新创建的对象之后需要重新计算size大小
size += safeSizeOf(key, createdValue);
}
}

if (mapValue != null) {
entryRemoved(false, key, createdValue, mapValue);
return mapValue;
} else {
//每次新加入对象都需要调用trimToSize方法看是否需要回收
trimToSize(maxSize);
return createdValue;
}
}

其中LinkedHashMap的get()方法如下:

1
2
3
4
5
6
7
8
9
10
//LinkedHashMap中的get方法
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
//实现排序的关键方法
if (accessOrder)
afterNodeAccess(e);
return e.value;
}

调用的afterNodeAccess()方法将该元素移到队尾,保证最后才删除,如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
//当前节点p移动到尾部之后,尾部指针指向当前节点
tail = p;
++modCount;
}
}

由此可见LruCache中维护了一个集合LinkedHashMap,该LinkedHashMap是以访问顺序排序的。当调用put()方法时,就会在结合中添加元素,并调用trimToSize()判断缓存是否已满,如果满了就用LinkedHashMap的迭代器删除队头元素,即近期最少访问的元素。当调用get()方法访问缓存对象时,就会调用LinkedHashMapget()方法获得对应集合元素,同时会更新该元素到队尾。

以上便是LruCache实现的原理,理解了LinkedHashMap的数据结构就能理解整个原理。如果不懂,可以先看看LinkedHashMap的具体实现。

参考资料

Powered by Hexo and Hexo-theme-hiker

Copyright © 2013 - 2019 iTimeTraveler All Rights Reserved.

访客数 : | 访问量 :